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Abstract

The precision and accuracy of atomic clocks has increased rapidly over the past
decade, leading to improvements in technologies such as gravity gradiometers and
GPS. However, in some cases, the methods of extracting information from optical
atomic clock comparisons are imperfect and can be improved. This work introduces
two methods for fitting elliptical data obtained from atomic clock experiments: a
neural network and a maximum likelihood estimate. Despite extensive training,
the neural network falls short of outperforming the current least-squares method.
On the other hand, when given enough data, the maximum likelihood estimate is
shown to produce more accurate fits than the least-squares method. Ideas for further
improving these machine learning methods are discussed.
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Chapter 1

Introduction

Ellipse fitting is relevant in many areas of study. For one, shape-based analysis

plays an important role in image processing. It is often desirable to detect shapes like

polygons or ellipses in images. Ellipse detection can be useful in applications such as

pupil tracking, uncrewed aerial vehicle navigation, astronomical shape segmentation,

and object detection [1]. The application of particular interest to this thesis is in

atomic clock comparisons. Atomic clocks play an important role in society. They

are used in a wide variety of applications such as the Global Positioning System

(GPS), telecommunication, and financial transaction. GPS, for example, works

by synchronizing atomic clocks in satellites to clocks on the ground to determine

location. The precision of the atomic clocks is one of several factors that contribute

to the overall precision of GPS. With more precise time-tracking, GPS could, for

example, become accurate enough to measure small strains of the Earth’s crust to

predict earthquakes [1]. More accurate GPS could also be used in self-driving cars to

help cars determine accurate positions of objects on the road. In general, as atomic

clocks improve, technologies that depend on atomic clocks tend to also improve.

One way to improve atomic clocks is by enhancing the methods of extract-

ing information from them. Some atomic clock experiments produce data that is
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elliptical in shape, and information is extracted from these clocks via ellipse fit-

ting. However, current methods of ellipse fitting perform poorly when applied to

these experiments, and there exists a need to investigate new methods [1], [2]. This

thesis introduces two novel machine learning methods for fitting ellipses: a neural

network and a maximum likelihood estimate. It is shown that the neural network

performs slightly worse than the current least-squares method, while the maximum

likelihood estimate performs better than least-squares on ellipses with a sufficient

number of points. Suggestions are provided for future work to improve upon the

machine learning methods. These findings provide a new avenue for developing el-

lipse fitting algorithms and extracting information from atomic clocks. The results

indicate that atomic clocks will continue to improve, and as such pave the way for

advancements in a wide range of technologies.
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Chapter 2

Atomic Clocks

2.1 Applications

Before introducing the algorithms developed for this thesis, it is important

to understand why atomic clocks are relevant to society. Telecommunication sys-

tems and GPS navigation rely on extremely accurate timekeeping in order to func-

tion properly. Historically, whenever an improvement in time-tracking occurs, new

technologies emerge, and current technologies improve. For one, more precise time-

tracking may enable GPS to become accurate enough to measure small strains of

the Earth’s crust to predict earthquakes [1].

The application of atomic clocks also extends beyond uses in technology.

Scientists have been attracted to the notion of being able to track the dynamics

of simple quantum systems down to their most elementary steps. Some theories

suggest that the fundamental forces, and thus the fundamental constants, may be

time-dependent [3], [4]. Comparisons of precise atomic clocks could help uncover

this time-dependence [5].

Additionally, precise frequency comparisons between clocks located in dif-

ferent places can be used to investigate the properties of dark matter. When a
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dark-matter object passes through a network of clocks, the initially synchronized

clocks may become desynchronized and exhibit a particular signature that reflects

the spatial structure of the dark-matter object and how it interacts with atoms [6].

Results showing time-dependence of the fundamental constants or properties

of dark-matter would open the door to an abundance of new physics and new en-

gineering. Since many physical processes are time-dependent, advancements in the

precision of clocks have seen an increase in science’s ability to measure the dynamics

of the physical world. Experiments that can measure the time variable to a high

degree of certainty are able to infer strong conclusions.

2.2 Multiplexed Optical Lattice Clock

The enhancement of atomic clocks will likely lead to new and improved tech-

nologies, and possibly new physics. To address how to improve atomic clocks, a

brief understanding of their physical mechanisms is needed.

Recently, a Multiplexed Optical Lattice Clock has been created to observe

the dynamics of two atomic clocks [7]. Each clock in the multiplexed lattice consists

of an ensemble of a few thousand strontium atoms. To interrogate the clocks, each

ensemble of atoms is cooled to temperatures near absolute zero and prepared in a low

energy state. Then, radiation of a specific energy and frequency is simultaneously

shot at two clock ensembles, driving the 1S0 ↔ 3P0 frequency transition. Next,

the number of atoms that have transitioned to the excited state is measured for

each ensemble [7]. This same experimental procedure is conducted many times.

By parametrically plotting the fraction of atoms in the excited state over the total

number of atoms for each ensemble, one obtains a noisy ellipse, as shown in Figure

2.1.

Ellipse fitting can be used to extract the shift in periodicity between two
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Figure 2.1: Data from the Multiplexed Optical Lattice Clock. P1 and P2 represent
the excitation fraction of population 1 and 2, respectively. An excitation fraction of 1.0
indicates that all the atoms in an ensemble are found in the excited state. An excitation
fraction of zero indicates all atoms are in the ground state. The excitation fractions are
plotted parametrically and in time (inset) [7].

clocks ensembles. This phase shift is useful for diagnosing causes of phase differ-

ence due to several phenomena, including magnetic and electric fields, temperature

gradients, and gravitational redshifts. The multiplexed clock is intentionally ori-

ented in a vertical direction to quantify shifts in frequencies of the atom popula-

tions specifically due to gravitational time dilation. The device is able to measure

the gravitational redshift due to general relativity at the sub-centimeter scale [7].

These capabilities are made possible mainly through analysis of the phase difference

between ensembles. Improving methods of fitting atomic clock data and extract-

ing differential phase thus directly impacts the precision to which these clocks can

measure environmental conditions.
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Chapter 3

Ellipse Fitting

The task of extracting the differential phase between two clocks boils down

to fitting elliptical data (see Figure 2.1). This chapter details the form in which

ellipses arise from clock data. In addition, the current least-squares method used

for fitting clock data is described along with the method’s shortcomings.

3.1 Phase Extraction

As described in [8], the normalized noise-free excitation fractions of two pop-

ulations of atoms in two clock ensembles can be expressed as

x = cx cos (ϕc + ϕd) + bx

y = cy cos (ϕc − ϕd) + by

(3.1)

where x and y are the excitation fractions of each population, cx and cy are the

normalized fringe contrasts, bx and by are offsets, ϕc is the common mode phase,

and ϕd is the differential phase. During a single clock comparison, the contrasts,

offsets, and differential phase remain relatively constant, whereas the common mode

phase changes from shot-to-shot. A parametric plot of equation 3.1 across variable
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ϕc results in an ellipse.

To fit data of this form to an ellipse, we first need to rewrite (x, y) in the

conic form:

Ax2 +Bxy + Cy2 +Dx+ Ey + F = 0 (3.2)

This can be done by re-scaling (x, y) as

x′ = (x− bx) /cx = cosϕc cosϕd − sinϕc sinϕd

y′ = (y − by) /cy = cosϕc cosϕd + sinϕc sinϕd

(3.3)

Then, by the Pythagorean trig identity, we see that

(
x′ − y′

2 sinϕc

)2

+

(
x′ + y′

2 cosϕc

)2

− 1 = 0 (3.4)

Finally, we can expand equation 3.4 using the relationships in equation 3.3 to find

1

c2x
x2 − 2 cos 2ϕd

cxcy
xy +

1

c2y
y2 +

(
2by cos 2ϕd

cxcy
− 2bx

c2x

)
x+

(
2bx cos 2ϕd

cxcy
− 2by

c2y

)
y

+

(
b2x
c2x

+
b2y
c2y

− 2bxby cos 2ϕd

cxcy
− 4 cos2 ϕd sin

2 ϕd

)
= 0

(3.5)

Note that the coefficients in equation 3.5 are the same coefficients as in equation

3.2. Then, a quick substitution shows that the differential phase between the two

clock ensembles can be calculated using equation 3.6:

ϕd =
1

2
cos−1

(
−B

2
√
AC

)
(3.6)

where A, B, and C are coefficients of the fitted ellipse [8].
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3.2 Least-Squares Algorithm

Currently, the least-squares optimization method is used to fit data to find

coefficients A through F in equation 3.2 and extract the differential phase in atomic

clock comparisons. The basic idea behind the method is outlined in [9], and a short

description is provided here.

As outlined in the previous section, an ellipse is a special case of a conic

section which can be described by a second order polynomial

F (x, y) = Ax2 +Bxy + Cy2 +Dx+ Ey + F = 0 (3.7)

with the ellipse-specific constraint

B2 − 4AC < 0 (3.8)

where A,B,C,D,E, F are coefficients of the polynomial and (x, y) are the coordi-

nates of points that lie on the ellipse. The function F (x, y) is the algebraic distance

from the point (x, y) to the conic. By introducing vectors

a = [A,B,C,D,E, F ]T

x = [x2, xy, y2, x, y, 1]

the algebraic distance can be re-written as

Fa(x) = x · a = 0 (3.9)

Then, to find the conic with coefficients a that minimizes the sum of the squared

algebraic distances from the points (xi, yi), i = 1, ..., N to the conic, one can solve
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the optimization problem:

min
a

N∑
i=1

F (xi, yi)
2 = min

a

N∑
i=1

(Fa (xi))
2

= min
a

N∑
i=1

(xi · a)2
(3.10)

To ensure an ellipse-specific solution to equation 3.10, the constraint in equation

3.8 must be satisfied. Since conics with coefficients a and coefficients α · a, α ̸=

0 represent the same conic, the constraint in equation 3.8 can be re-written as

B2 − 4AC = 1 with proper scaling.

Then, the ellipse-specific fitting problem can be reformulated as

min
a

∥Da∥2 subject to aTCa = 1 (3.11)

where D is size N× 6 and the constraint matrix C is size 6× 6.

D =



x2
1 x1y1 y21 x1 y1 1

...
...

...
...

...
...

x2
i xiyi y2i xi yi 1

...
...

...
...

...
...

x2
N xNyN y2N xN yN 1


C =



0 0 2 0 0 0

0 −1 0 0 0 0

2 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0


The approach described in [10] uses Lagrangian multipliers to solve this optimization

problem. One drawback, however, is that the matrix C is singular and thus the

computation of the eigenvalues can be numerically unstable and produce wrong

results [9].

The ellipse fitting method currently used in the multiplexed optical lattice
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clock is the least-squares method described in [9], henceforth referred to as simply

the ’least-squares’ (LS) method. This method overcomes some drawbacks from the

approach in [10] by splitting matrices D and C into four quadrants and solving

separate equations corresponding to the quadratic and linear terms of matrix D.

Although this method is more numerically stable, it too possesses some shortcomings

such as bias.

3.3 Least-Squares Bias

When noise is present in data, the LS algorithm is bias towards smaller el-

lipses. This bias is demonstrated in Figure 3.1. An analysis was conducted where

the LS algorithm was used to fit 12 sets of 20 points which represent different ellip-

tical arcs of the same ellipse. The noise-to-signal ratio (SNR) was varied from 0.01

to 0.5, and it was found that as noise increases, the elliptical fits shrink in size and

become less accurate [9].

Figure 3.1: Least-squares algorithm applied to data with noise. 12 datasets
describing different elliptical arcs of the ellipse centered at (4,3) with semiaxes (4,2) and
tilt 30 degrees are plotted. As the noise-to-signal ratio (SNR) increases, the LS method
produces smaller and less accurate fits [9].

In addition, the LS method is bias with respect to differential phase and

produces inaccurate fits when ϕd is close to 0 or π/2 [11]. These ellipses are long
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and skinny and have eccentricity close to unity. Conversely, the method performs

well when the phase is close to π/4 and the ellipses are more circular in shape. This

relationship is shown in Figure 3.2.

To create this plot, Monte-Carlo simulation were used to generate 500 ellipses

with differential phase values evenly spaced between 0 and π/2. The contrast for

each ellipse was 0.65, and each atom population had a constant 1000 atoms. The

number of points for each ellipse was randomly selected between 5 and 500. More

details about these simulations, such as the noise model for atomic clock compar-

isons, can be found in Chapter 4.2.1. The LS method was used to fit all 500 ellipses

and extract the differential phase values. This whole process was repeated 100 times

and averaged. The Phase Error ϵ = ϕ̄d,LS −ϕd,true is plotted against the true phase,

where ϕ̄d,LS is the averaged LS differential phase estimate and ϕd,true is the true

differential phase.

Figure 3.2: Least-Squares Phase Bias. 100 batches of 500 ellipses with differential
phase values evenly spaced between 0 and π/2 were created via Monte-Carlo simulation.
The LS method was used to extract estimates of each differential phase, and the estimates
were averaged over all 100 runs. At ϕd near 0, LS overestimates ϕd, while at ϕd near π/2,
LS underestimates ϕd.
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It is clear that at true phase near 0, the least-squares method overestimates

the true phase, while at ϕd near π/2, it underestimates ϕd. Luckily, the nature of

this bias is fairly structured and can be compensated for via bias correction.

3.4 Least-Squares Bias Correction

To correct for the LS bias, we first fit the curve in Figure 3.2. The curve

follows the general shape of the tangent function, so we fit to a function of the form

ϵ = a1 tan[a2(ϕd,true + a3)] + a4 (3.12)

where ϵ is the residual, ϕd,true is the true differential phase value, and a1 through a4

are the coefficients of the fit. We find the following values for the coefficients:

Parameter Value
a1 -0.01053
a2 1.77000
a3 -0.78614
a4 -0.00001

Table 3.1: Table of Least-Squares phase bias fit values a1-a4 from equation 3.12.

The resulting fit is shown in Figure 3.3. Note that by symmetry, a4 = 0

and a3 = −π/4. By inspection, a2 ≈
√
π. It is likely the case that a2 =

√
π as

the number of simulations approaches infinity, but moving forward the values in

Table 3.1 are used. The high accuracy of the fit indicates that the function could

be analytically derived, but we leave this derivation for future work.

This regression fit can be used to describe the bias in the LS algorithm and

subsequently be used to correct for bias when fitting with the LS algorithm. While

the bias-corrected LS algorithm is relatively accurate, an even more accurate method

for fitting elliptical clock data is desirable. The next section outlines a neural net-
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Figure 3.3: Fit of the Least-Squares Phase Bias. The Least-Squares phase bias
shown in Figure 3.2 is fit to a funciton of the form a1 tan[a2(ϕd,true + a3)] + a4.

work algorithm designed specifically for this task.
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Chapter 4

Neural Network

Neural networks have become a powerful tool in the field of machine learn-

ing, enabling us to solve complex problems that were once thought to be beyond

the capabilities of computers. At their core, neural networks are inspired by the

structure and function of the human brain, using layers of interconnected nodes to

learn from data and make predictions. This ability to learn from data makes neural

networks a highly effective tool for tasks such as pattern recognition, classification,

and regression.

A novel neural network used to fit ellipses in the multiplexed clock and other

atomic clocks could produce more accurate fits than the current LS method [7].

Machine learning is appealing because it has been implemented for ellipse fitting

outside the application of atomic clocks and has outperformed numerical methods

in these applications [12], [13]. Furthermore, a neural network algorithm is promising

because the noise present in physical clock comparisons can be accurately modeled

and a vast training data set that closely resembles real experiments can be simulated

to train the new algorithm.

In this chapter, we review previous work that highlights the success of neu-

ral networks in fitting elliptical data. We then introduce a novel neural network
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specifically engineered to extract differential phase from atomic clock comparisons.

4.1 Past Work

Machine learning is used in many fields and is a popular technique for fitting

elliptical data. It is widely used in computer vision—convolutional neural networks

have been developed to infer clustered and heavily occluded elliptical objects from

images. Examples include fruits hanging from trees shown in Figure 4.1a [13], [14].

Another real-world application involves an ellipse fitting Lagrange Programming

Neural Network (LPNN) that was developed to fit ellipses with different types of

noise, shown in Figure 4.1b [12].

Figure 4.1: Real-world applications of machine learning for fitting ellipses. a)
Ellipses being fit to occluded fruit in trees. b) Lagrange programming neural network
(LPNN) fitting to noisy data. In both applications, the machine learning method outper-
formed non-machine learning methods [12], [13].

The neural network used in Figure 4.1b was also used for edge detection of

various images, including those of the human eye, space probes, and plankton. This

particular neural network has demonstrated superior performance in fitting elliptical

data when compared to multiple state-of-the-art algorithms [12]. In addition, the

approach outlined in Figure 4.1a has also outperformed other non-machine learn-

ing methods. Although the LPNN and other machine learning techniques used in
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computer vision are impressive, their relevance to atomic clock data is limited. Nev-

ertheless, given the success of machine learning methods in the applications shown

above, it is reasonable to assume that a novel neural network could perform well in

fitting atomic clock data.

4.2 Neural Network

Here, we introduce the novel Neural Network (NN) that is engineered to

fit atomic clock data. The first section details how the noise in differential clock

comparisons can be modeled. Arguably the most important quality of a neural

network is the data it is trained on, so it is important that our noise model accurately

mimics the physical dynamics. The next section highlights how the training data is

simulated. Then, the motivation for the structure of the network is detailed along

with a procedure followed for training.

4.2.1 Modeling Quantum Projection Noise

As outlined in chapter 3.1, the normalized noise-free excitation fractions of

two populations of atoms in two clock ensembles can be expressed as

x = cx cos (ϕc + ϕd) + bx

y = cy cos (ϕc − ϕd) + by

(4.1)

where x and y are the excitation fractions of each population, cx and cy are the

normalized fringe contrasts, bx and by are offsets, ϕc is the common mode phase,

and ϕd is the differential phase. Note that equations 4.1 do not account for noise.

The main source of noise in clock experiments is Quantum Projection Noise

(QPN). This noise arises when quantifying the excitation fraction of each clock

ensemble. During a clock interrogation in the multiplexed clock [7], all atoms in an
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ensemble are prepared in the |1S0⟩ (ground) state. Then, lasers are shot at the atom

populations to excite some of the atoms to the |3P0⟩ (excited) state. The energy

level of each atom must collapse to one of these two states. The excitation fraction

is simply the fraction of atoms measured in the excited state over the total number

of atoms. Since only a finite number of atoms can be probed, there will always be

some uncertainty in the true superposition of the quantum mechanical state. This

uncertainty in the measured excitation fraction is called quantum projection noise.

To model QPN, consider an ensemble of N atoms with a probability pa to be

in state a (|3P0⟩ for example). Then, the likelihood of measuring Na atoms in that

state is given by the binomial distribution [15]

P (Na, N, pa) =
N

Na! (N −Na)!
pNa
a (1− pa)

N−Na (4.2)

Now, consider simulating ellipse data using equations 4.1. Point (xi, yi) will have

some QPN associated with each coordinate. To account for QPN in coordinate xi,

xi can be updated by sampling from a binomial distribution X ∼ Bin(N, xi) where

N is the number of atoms in each ensemble (trials) and xi is the excitation fraction

(probability of success). This will return the number of successes over the N trials.

After normalizing over N , we obtain an updated xi that accounts for QPN. This

process is repeated for coordinate yi and the rest of the points on the ellipse.

4.2.2 Creating Training Data with Monte-Carlo Simulations

After modeling QPN, the next step is to generate training and testing data

via Monte-Carlo simulation. However, the complexity of the data needs to be care-

fully chosen. Each simulated ellipse can be described by nine variables: contrasts

and offsets for each axis (cx, cy, bx, by), differential phase (ϕd), common phase (ϕc),

number of atoms in each ensemble (Nx, Ny), and the number of points. It is worth
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noting that due to the latency between measurements in the lab, the contrasts and

the number of atoms in each ensemble can also vary from point-to-point [7].

To simplify the data and make it easier for the neural network identify pat-

terns, the degrees of freedom in the data are reduced by making certain assumptions

for each ellipse. For example, all offsets are set to bx = by = 0.5, and differen-

tial phase is held constant across points. Additionally, it is assumed that con-

trasts and the number of atoms in each ensemble are constant from point-to-point

(cx = cy, Nx = Ny). In lab, ϕc is essentially randomly varied for each point; thus, it

is also varied randomly in simulation.

As a result of these assumptions, the degrees of freedom of the data set is

reduced from nine to three for each ellipse: ϕd, contrasts, and number of points are

the only varying parameters. This simplification not only makes it easier for the

neural network to identify patterns, but also helps reduce overfitting and improve

the generalization of the model.

As detailed in Chapter 6.1, the data can be further simplified by exclud-

ing QPN, variable contrast, and variable number of points, leaving ϕd as the only

changing parameter. This primitive data set serves as an initial training set before

progressing to more complex data sets that incorporate QPN, variable contrast,

and variable number of points. By starting with this simpler data set, the neural

network is able to learn the underlying physics and patterns of the system before

dealing with the more complex data sets.

Overall, the process of generating and simplifying the simulated ellipse data is

crucial for training an accurate and reliable neural network. By reducing the degrees

of freedom and carefully choosing the complexity of the data, we can improve the

generalization of the model and reduce overfitting, leading to better predictive power

and a deeper understanding of the underlying physics.
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4.2.3 Structure and Hyperparameters

The architecture and hyperparameters of the neural network are arguably

more important than the quality of the training data. Neural networks are a class

of machine learning models inspired by the structure and function of the human

brain. They are composed of interconnected ”neurons” that receive input signals,

apply a nonlinear function called an ”activation function”, and produce an output

signal. These neurons are organized into layers, with the first layer receiving input

data and subsequent ”hidden” layers transforming the data to produce an output

prediction.

The neural network used in this study has a specific structure consisting of

1000 input neurons, with the capacity to process up to 500 ellipse points. The input

layer is designed in such a way that the first neuron represents the x-coordinate of

the first ellipse point, while the 501st neuron represents the y-coordinate. The input

layer is filled sequentially in this way until all the points on the ellipse are accounted

for. The remaining neurons in the input layer are set to 0 and have no impact on the

output. This technique is known as ”zero padding,” and it allows for the efficient

processing of varying-length input sequences. The output layer contains only one

neuron that represents the differential clock phase, ϕd.

During training, the network weights are initialized to random values. The

value of each neuron in the first hidden layer is obtained by taking a weighted linear

combination of each neuron from the input layer and applying the Rectified Linear

Unit (ReLU) activation function, which enables the network to capture nonlinear

relationships between input and output. The values for the remaining neurons in

the network, including the output, are calculated in this same way. The difference

between the predicted output and the true output is then calculated using a loss

function. The main loss function used in this work is the Mean Squared Error (MSE)
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described by equation 4.3:

MSE =
1

N

N∑
i=1

(ϕdi − ϕ̂di)
2 (4.3)

where ϕdi is the true differential phase of the i’th ellipse and ϕ̂di is the estimated

differential phase.

The goal during training is to adjust the weights to minimize the MSE loss

function and produce an algorithm that can predict phase close to the true value.

This is done via, backpropagation, an algorithm that computes the gradient of the

loss function with respect to each weight and updates the weights to minimize the

loss function[16].

In designing the NN, we also need to choose hyperparameters that determine

the optimization process. A summary of some of the important hyperparameters

and their functionalities is provided below.

• Epochs: The number of times the entire training dataset is passed through

the network during training.

• Batch size: The number of training examples processed in each forward and

backward pass before updating the weights during training.

• Optimizer: The algorithm used to update the network weights based on the

gradients computed during backpropagation. The two main optimizers used

in this work are Stochastic Gradient Descent (SGD) and Adam.

• Scheduler: The technique used to adjust the learning rate during training to

improve convergence and prevent overfitting.

• Second layer size: The number of neurons in the second (hidden) layer of

the network.
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• Starting learning rate: The initial value of the learning rate used during

training, which determines the step size for weight updates.

• Dropout: A regularization technique used to prevent overfitting by randomly

dropping out (setting to zero) some fraction of the neurons in a layer during

training.

In summary, the architecture and hyperparameters of a neural network are

paramount in producing a reliable and precise algorithm. However, selecting the

right combination of hyperparameters can be a daunting task as there is no es-

tablished protocol for doing so. To address this challenge, we have leveraged the

capabilities of Weights and Biases (W&B), a popular platform for hyperparameter

optimization.

4.2.4 Hyperparameter Sweeps

The platform Weights and Biases (W&B) is used to sweep over ranges of

hyperparameters to systematically explore the space of possible architectures and

hyperparameters, and to identify those that produce the best results. The platform

also provides helpful information about system metrics such as GPU percent utiliza-

tion, power usage, temperature, percent memory allocation, and more. Knowledge

of these metrics helps to identify any computing inefficiencies that occur during

training. For this work, W&B is used to track training and testing loss along with

several hyperparameter values.

Figure 4.2 shows a ’sweep’; a visual representation of 116 neural networks

trained with different hyperparameters and their resulting loss. Each curve repre-

sents a single network with a unique set of hyperparameters. The color of the curve

corresponds to the loss. In total, 126 sweeps were conducted to train a total of 2489

different neural networks.
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Figure 4.2: Sweep of hyperparameters. 116 different neural networks are trained
to find optimal hyperparameter values. Each curve represents a neural network with a
unique set of hyperparamters. The networks are trained and loss is computed and shown
as a heatmap on the right of the figure.

Most of the sweeps were conducted using the W&B Bayesian sweep, which

works by creating a probabilistic model of the loss function and suggesting new

sets of hyperparameters to evaluate, based on the expected improvement of the

loss function. The sweep balances exploration (trying out new, potentially better

hyperparameters) with exploitation (using the information gained from previous

evaluations to suggest the most promising hyperparameters).

The performance of the NN is compared to that of the LS algorithm in chapter

6.1.
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Chapter 5

Maximum Likelihood Estimate

In addition to the neural network detailed in Chapter 4, a maximum likelihood

estimate (MLE) algorithm was developed to fit data from clock comparisons. This

method was primarily developed by Matt Cambria to estimate differential phase,

and extend by myself (Nico Ranabhat) to estimate clock contrasts. MLE algorithms

have been used in the past to successfully fit ellipse data from differential clock

comparisons [17] and are widely used in various fields such as economics, engineering,

and biology.

5.1 Theory

MLE is a method used to estimate the parameters of a statistical model based

on observed data, by maximizing the likelihood function. The likelihood function

is defined as the probability of the observed data, given the model parameters. By

maximizing this function, we obtain the parameter values that are most likely to

have generated the observed data.

Mathematically, the MLE is obtained by solving the following optimization

problem:
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θ̂MLE = argmax
θ

,L(θ;x1, x2, ..., xn) (5.1)

where θ̂MLE is the maximum likelihood estimate of the parameter θ, L(θ;x1, x2, ..., xn)

is the likelihood function, and x1, x2, ..., xn are the observed data [18].

In order to obtain the MLE, we need to find the value of θ that maximizes

the likelihood function. When the likelihood function is explicitly known, this can

be achieved by taking the derivative of the likelihood function with respect to θ,

setting it equal to zero, and solving for θ. The resulting value of θ is the maximum

likelihood estimate.

For atomic clock data, we define θ to consist of two parameters: differential

phase (ϕd) and contrast (c). That is, we want to find the values for ϕd and c that

best describe the given points of an ellipse. Note that this MLE algorithm could

be further extended to include N , the number of atoms in each ensemble. The

algorithm iterates through these steps:

1. Estimate initial values for ϕd and c based on the correlation and range of the

data.

2. Construct an ellipse using the initial guess values for ϕd and c, and generate

1000 points evenly spaced on this ellipse.

3. Generate bivariate Gaussian distributions centered at each of these 1000 points

to approximate the bivariate binomial distribution produced by quantum pro-

jection noise (see Chapter 4.2.1).

4. Evaluate the probability density for each experimental data point with respect

to all of the generated Gaussian distributions.

5. Sum all of the probability densities to determine the likelihood of observing

the data given the initial parameter guess.
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6. Adjust the parameters (using the scipy.optimize package in Python) until the

likelihood function is maximized.

In step 3, the bivarite Gaussian distribution is used to approximate the bi-

variate binomial distribution produced by QPN. This conversion from discrete to

continuous distributions is a necessary step for the scipy optimization package. This

approximation is valid when Np > 10 and N(p − 1) > 10 where N is the number

of atoms in each ensemble and p is the excitation fraction [18]. In our analysis,

we use 1000 atoms in each ensemble and only consider excitation fractions between

0.175 < p < 0.825, so the approximation is valid.

5.2 Bias

The same procedure outlined in Chapter 3.4 is used to classify the bias of the

MLE algorithm. To recap, Monte-Carlo simulation is used to generate 500 ellipses,

each with differential phase values evenly spaced between 0 and π/2. The contrast

and number of atoms in each ensemble for each ellipse is set to 0.65 and 1000,

respectively. The number of points varies randomly between 5 and 500. Then, the

MLE and LS algorithms are used to fit each ellipse to obtain a differential phase

estimate. This whole process is repeated 100 times and averaged.

Figure 5.1 shows the errors of the phase estimate plotted against ϕd for

the LS and MLE algorithms. Unlike the LS errors, the MLE errors are seemingly

independent of ϕd, indicating that the MLE algorithm is not bias for this particular

simulated set. Thus, we do not apply a bias correction to the algorithm.

The bias of MLE could be further investigated by considering data at phase

specifically near 0 or π/2, or data with larger amounts of noise. However, we omit

this analysis in this work.



26

Figure 5.1: MLE Phase Bias. 100 batches of 500 ellipses with differential phase values
evenly spaced between 0 and π/2 were created via Monte-Carlo simulation. The MLE
method was used to extract estimates of each differential phase, and the estimates were
averaged over all 100 runs. Unlike LS, the MLE errors are independent of true phase for
this simulated set. A regression fit of the LS errors is included along with a dashed line
through the origin for reference.
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Chapter 6

Results and Discussion

The performance of the neural network and maximum likelihood estimate is

compared against the least squares algorithm. Each algorithm is used to fit various

ellipses that are simulated to mimic differential atomic clock experiments. In this

analysis, we use ’loss’ to quantify the closeness of an estimate to the true value. The

loss function used is the mean squared error (MSE):

MSE =
1

N

N∑
i=1

(ϕdi − ϕ̂di)
2 (6.1)

where N is the number of ellipses being evaluated (typically 100), ϕd is the

true differential phase and ϕ̂d is the estimated differential phase.

6.1 Neural Network

Initially, the neural network was trained on a simple dataset with 30 points per

ellipse and no noise, and after achieving reasonable results, it was gradually adapted

and trained on increasingly complex datasets. The objective of this development

process was to create a neural network that could surpass the performance of the

LS algorithm on a testing set containing diverse ellipses with a multitude of degrees
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of freedom.

Figure 6.1 shows results from two early networks trained on datasets with

30 points per ellipse, with and without noise. P1 and P2 are the excitation fractions

of ensemble 1 and ensemble 2, respectively. The neural network fit is in blue and

the ’truth’ is plotted in black. The nine ellipses in each plot are randomly selected

ellipses from a testing set of 100 ellipses. Additionally, the average loss (from equa-

tion 6.1) for the NN and LS algorithms are included above each plot. Smaller loss

indicates a more accurate algorithm. Note that we do not apply the least-squares

bias correction from Chapter 3.4 for these results.

Without Noise
NN loss: 9.69× 10−4

LS loss: 6.06× 10−12

With Noise
NN loss: 10.7× 10−4

LS loss: 3.78× 10−4

Figure 6.1: Initial Neural Network (NN) results. These plots show fits for nine
randomly selected ellipses from a test set of 100 ellipses, where P1 and P2 are the excitation
fraction of each ensemble. Two neural network are trained on data with (left) and without
(right) quantum projection noise. The average loss over the testing set for the NN and
the least-squares (LS) methods is included above each figure. The blue curve is the NN
fit and the black curve is the true ellipse.

The neural network loss is similar for both datasets, while the LS algorithm

performs much better on noise-free data. The two algorithms have similar loss on

the data with noise (note, however, that we use the LS algorithm without bias

correction for the loss calculations in Figure 6.1). This indicates that changes in

complexity of the data affect the LS algorithm more than the NN.
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Next, the network was modified through zero padding techniques, as outlined

in Chapter 4.2.3, to enable processing of up to 500 points, as opposed to the previous

fixed number of 30. Following this modification, the network was trained on a

training set featuring ellipses with varying numbers of points, ranging from 5 to

500. It is important to note that this dataset only consisted of ellipses with ϕd on

the interval [0, 0.15] and [π
2
− 0.15, π

2
] radians. This interval is where the LS method

is most bias could potentially be outperformed by the NN. Additionally, the LS-bias

correction was applied to the LS algorithm results in Figure 6.2. The loss for the

NN, LS, and MLE algorithms are included below the plot.

Figure 6.2: Additional Neural Network results. This figure shows nine randomly
selected ellipses from a test set of 100 ellipses. Each ellipse has a random number of points
between 5 and 500. P1 and P2 are the excitation fraction of each ensemble. The average
loss over the testing set for the NN, LS, and MLE methods is provided below the plot.
The NN fit is plotted in blue, LS in orange, and the truth in black.

This NN has loss roughly an order of magnitude larger than the LS and MLE
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loss. This network was trained on roughly one-million testing ellipses for 200+

epochs. After extensive training, the network was unable to produce loss lower than

the LS method.

To investigate bias, phase errors are plotted against true phase, shown in

Figure 6.3. The NN errors are in blue, bias-corrected LS in orange, and MLE in

green.

Figure 6.3: NN Phase Bias. The phase errors for each sample in the testing set are
plotted for the NN, bias-corrected LS, and MLE algorithms. The NN errors are seemingly
independent of true phase.

The NN does not seem to have strong phase bias for this particular testing

set, and a bias-correction could not be successfully applied to the NN in the same

way it was for LS. Future work could investigate the bias of the NN for data with

high-noise or few shots, and a bias correction could potentially be applied for these

regimes.

The bias-corrected LS algorithm outperformed all neural network models de-
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veloped in terms of minimizing loss. Despite various network architectures and

training datasets being implemented and tested, the performance of the neural net-

work could not surpass that of the LS algorithm. While this outcome may be

discouraging, it is important to note that the neural network may still have poten-

tial for further improvement. For instance, training for more epochs or conducting

more in-depth hyperparameter sweeps could potentially enhance the performance

of the network. Next, we analyzse the performance of the MLE algorithm.

6.2 Maximum Likelihood Estimate

The MLE algorithm performs significantly better than the neural network

and is able to accurately fit ellipses with ϕd in the full range of [0, π
2
]. Figure 6.4

shows the performance of MLE tested on 100 different ellipses with varying ϕd. The

loss for the MLE and LS algorithms on this test set is included on the top right of

the figure.

Although the phase error plot does not provide a clear indication of which

algorithm performs better overall, calculating the loss provides a quantitative mea-

sure of algorithm accuracy. However, the loss for both algorithms is comparable,

making it challenging to distinguish their performance based on this metric alone.

To compare MLE to LS further, we plotted the loss against the number of

points on the ellipse for both algorithms. As the number of points increased, the

loss decreased for both algorithms, which intuitively makes sense. More points mean

more information, which leads to a better fit. However, the rate of loss convergence

differed between the two algorithms. To demonstrate this, we simulated 20 sets of 95

ellipses, with each set having a unique ϕd value ranging between 0 and π/2. Within

each set, one ellipse had five points, another six, and so on up to 100 points. All

ellipses were simulated with 1500 atoms in each ensemble. Figure 6.5 displays the
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Figure 6.4: MLE Phase Errors. 100 different ellipses spanning the range of ϕd were
simulated and fit using MLE and LS. Phase error is plotted against true phase. The MLE
loss is lower than the LS loss by roughly a factor of 2.

relationship between the average loss and the number of points for both algorithms.

The LS algorithm outperforms MLE in fitting ellipses with fewer points, as

indicated by its lower average loss at low shot numbers. However, as the number of

shots increases, the MLE algorithm outperforms LS with lower loss. This trend is

demonstrated in Figure 6.6, which analyzes the same data from Figure 6.5 but for

ellipses with more than 55 points.

The results indicate that LS is a preferable algorithm when dealing with a

small number of data points. On the other hand, MLE has a faster rate of loss

convergence and is the more favorable option when there are a large number of

points on an ellipse (for this data, roughly more than 40 points).

The algorithms are further compared through the metric of noise. The same

procedure to construct Figure 6.5 is followed to create six batches of data with

varying number of atoms per ensemble. Fewer atoms results in more noise. The

results are presented in Figure 6.7, which illustrates the relationship between noise
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Figure 6.5: Comparing MLE to LS for variable shots (0-100). 20 sets of ellipses
that span different ϕd values between 0 and π/2 were simulated. Each set of ellipses had
a variable number of points between 5 and 100. The MLE and LS loss is calculated for
each set and plotted against number of shots.

and algorithm accuracy.

As expected, the accuracy of both algorithms decreases as the noise level

increases. This is intuitive, as more noise means that the measurements are less

reliable, and therefore fitting an accurate ellipse becomes more difficult.

However, the rate at which the algorithms’ accuracy decreases with increasing

noise is different. The LS algorithm is much more sensitive to noise, and its accuracy

decreases much more rapidly as the noise level increases. This is likely due to the fact

that the LS algorithm is based on minimizing the sum of squared errors, which can

be heavily influenced by outliers or noise. On the other hand, the MLE algorithm

is based on maximizing the likelihood of the data, which is a more robust method

that is less affected by outliers or noise.
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Figure 6.6: Comparing MLE to LS for variable shots (55-100). Data from
Figure 6.5 but zoomed in on number of points greater than 55. The MLE average loss is
lower than the LS loss in this regime.
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Figure 6.7: Comparing MLE to LS for variable noise. 20 sets of 95 ellipses, with
each set having a unique ϕd value ranging between 0 and π/2 are simulated. Within each
set, one ellipse had five points, another six, and so on up to 100 points. The average
loss is plotted against number of points for six different batches with each batch having
a different level of noise. The LS algorithm is more affected by noise than MLE, but
converges as noise decreases.
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Chapter 7

Conclusions

Ellipse fitting is a common tool used in science and engineering [7], [19], [20].

Generally, the task of fitting ellipses to data is not straightforward. For differential

clock comparisons in the multiplexed clock, the current least-squares method is

known to have bias and perform poorly when fitting data with high levels of noise

[2], [7].

This work introduces two algorithms to address the challenges of ellipse fitting

in atomic clock experiments: a neural network and a maximum likelihood estimate.

These algorithms are compared to the current bias-corrected least-squares algorithm.

The bias-corrected LS algorithm outperformed all neural network models de-

veloped in terms of minimizing loss, and despite various network architectures and

training datasets being implemented and tested, the performance of the neural net-

work could not surpass that of the LS algorithm. However, the neural network may

still have potential for further improvement through training for more epochs or

conducting more in-depth hyperparameter sweeps.

The maximum likelihood estimate performs much more competitively with

the least-squares algorithm. To analyze the discrepancies between the two algo-

rithms, their performance was evaluated in relation to the number of points on an
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ellipse and the amount of noise present. For ellipses with few points, the LS algo-

rithm outperformed MLE. However, as the number of points on an ellipse increased,

the MLE algorithm surpassed the LS algorithm. Furthermore, the LS algorithm

performed worse than the MLE algorithm on data with high noise.

In summary, the results indicate that the MLE algorithm is preferable when

dealing with data that has many points or high noise. Else, the bias-corrected LS

algorithms performs best.

These findings provide important insights into the performance of different

ellipse fitting methods and can help guide the development of future methods. Ul-

timately, the improved accuracy of fitting methods will lead to significant advance-

ments in a range of technological fields, making it a worthwhile area of study for

researchers in science and engineering.
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